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1. Overview 
 

In this report we present our research into the implementation of numerical libraries using the 
proposed HPCS languages.  Faced with the fact that the community has very little application 
experience (the implementations are not yet mature) with these languages, we chose a somewhat 
atypical approach: perform a case study of parallel Lower, Upper (LU) factorization and 
determine how this kernel can be implemented in the languages.  As such we decided to gather 
various algorithmic techniques that have been successful and make connections to specific HPCS 
language features. 
 
We settled on parallel LU factorization for a variety of reasons: 

- It is a well known, understandable kernel 
- Many implementations exist that span the performance spectrum 
- Getting it to perform well in parallel on distributed memory machines reveals many 

programming issues, solutions to which aren’t well represented in traditional languages. 
 

In Section 2 we give a short description of the algorithm and outline some of the roadblocks to 
high performance.  Section 3 presents some of the abstraction issues that arise when comparing 
the implementation of different versions of the algorithm in different languages. Sections 4 and 5 
describe the utilized software and hardware environments, respectively.  Section 6 contains our 
survey of the implementations.  In Section 7 we relate development effort to performance. We 
detail our observations regarding implementing a high performance LU code in an HPCS 
language in Section 8. Sections 9-11 discuss issues such as portability, automatic performance 
tuning and semi-automatic program tuning. In Section 12 we describe the types of software 
development tools needed for the DARPA platforms. Section 13 is reserved for discussing 
feedback given to HPCS hardware and language developers while Section 14 discusses results 
from the study workshop. And finally, Section 15 contains the conclusion. 
 
2. LU Factorization and its Implementation Challenges 
 

LU factorization attempts to decompose a general matrix A into a unit lower triangular (L) and 
upper triangular matrix (U).   Row permutations are typically used for numerical stability and so a 
permutation matrix (P) is also generated such that LU=PA.   The basic algorithm for this is 
shown below, assuming a square n x n matrix A: 
for i = 1 to n-1 

 find maximum absolute element in column i below the diagonal 
 swap the row of maximum element with row i 
 scale column i below diagonal by 1/A(i,i) 

L(i,i)=1 
for j = i+1 to n 
   L(j,i)=A(j,i)/A(i,i)  

 Set row i of U 
for j = i  to n 
  U(i,j)=A(i,j) 
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 Perform a “trailing matrix update”, i.e. update the part of the matrix below and to the 
right of A(i,i) 
for j=i+1 to n 
  for k = i+1 to n 
    A(j,k) = A(j,k)-L(j,i)*U(i,k) 
 
This step can equivalently be expressed as a “rank-one update”: 
  A(i+1:n,i+1:n) = A(i+1:n,i+1:n) - 
                                 L(i+1:n,i)*U(i,i+1:n) 

 
In order to achieve high performance through the use of Level 3 Basic Linear Algebra 
Subprograms (BLAS-3) (matrix-matrix) [10, 11, 12, 13] operations, implementers usually express 
the algorithm in block form. Challenges to high performance in a parallel setting include 
management of the following: 
 

- Communication for the row exchanges, updates to L and U, and the trailing matrix 
updates 

- The dependencies in the algorithm 
 
At this point it is interesting to note that sometimes the abstractions provided by a particular 
environment might inhibit optimization possibilities. A primary example of such inhibition is the 
set of design decisions that led to the creation of the Scalable Linear Algebra Package 
(ScaLAPACK) library [2, 8]. 
 
The ScaLAPACK library implementers focused on two primary aspects of large scale parallel 
computing: scalability and portability. The former was addressed by the choice of appropriate 
parallel data organization and use of established parallel algorithms that could be proven to scale 
on distributed memory computers. However, the latter aspect reduced the available optimizations 
to a subset that can be implemented on major variants of parallel hardware. Consequently, the 
ScaLAPACK code employs a lock-step method that is characterized by heavy synchronization 
and lack of overlap of communication and computation in the temporal sense (in the spatial sense 
there exists some overlap as some of the processors are computing while others are 
communicating data between each other). As a result, ScaLAPACK is easily ported on any 
existing parallel platform, but its performance can be easily matched and often exceeded by codes 
targeted at a specific architecture. 
 
3. Mapping to languages & Software Metrics 
 

In this Section we discuss how we developed metrics that guide us through implementations in 
languages at differing levels of abstraction, the key criticism leveled against using source lines of 
code (SLOC).  In the survey to follow we augment traditional SLOC counts with an indication of 
the various helper abstractions that were used.   These abstractions can either be serial or parallel.  
In the serial case we primarily have matrix abstractions: use of the familiar “triplet” notation for 
indexing, built-in matrix operators (\ - backslash, for example, in MATLAB), and “advanced” 
object oriented features.  In addition, we assume that uniprocessor BLAS are provided.   The 
parallel space is more diverse.  Languages can provide some subset of any of the following: 
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- First class distributed arrays 
- A global address space 
- Data parallelism 
- Multithreading 
- Atomic transactions 
- Advanced synchronization (single/sync variables, clocks, etc.) 
- Parallel Matrix Abstractions such as the Parallel BLAS (PBLAS) [2] and Basic Linear 

Algebra Communication Subprograms (BLACS) [14]. 
 
For those implementations that are concerned with high performance, we also measure the best 
performance attained (absolute and % of peak), the number of processors on which this was 
measured (an indication of scalability) and, where available, uniprocessor performance (which 
tells us something about parallel overheads). 
 
4. Survey of programming languages and environments used in the study 
 

The following languages and programming environments were used in this study: 
1. MATLAB is a high level language and programming environment with built-in 

multidimensional arrays. It is a commercially supported product available on a variety of 
modern processors and operating systems. It is particularly well suited for numerical 
computations including the LU factorization presented in this report. 

2. Octave is a high level language that aims to be an open source implementation of 
MATLAB. The current version of Octave allows implementation of the LU factorization 
algorithm presented in this report. 

3. Python is a high level language that has an open source implementation. Python 
combined with an open source numerical extension can be used to implement the LU 
factorization algorithm presented in this report. 

4. CAF stands for Co-Array Fortran. It is an extension of the Fortran language to allow a 
partitioned global address space paradigm. The extensions defined by CAF are planned to 
be incorporated in the Fortran 2008 standard. CAF is currently implemented on vector 
supercomputers such as Cray X1 and clusters of reduced instruction set computer (RISC) 
processors that use an interconnect fabric with support for one-sided communication. 

5. UPC stands for Unified Parallel C [16, 23]. It is an extension of the C programming 
language to support a partitioned global address space paradigm. Open source 
implementations of UPC support a wide spectrum of systems including high end 
supercomputers as well as commodity clusters with commodity interconnects. 

6. X10 [15] is a research language developed by IBM for the HPCS program. The language 
is based on Java syntax with multiple extensions to allow partition global address space 
programming. Current implementations integrated well with the Eclipse programming 
environment and generate Java Virtual Machine bytecode as well as native code for 
performance. 

7. Chapel [7] is a research language developed by Cray for the HPCS program. The 
language is based on the syntax of the Z programming language. There are many 
constructs to allow partition global address space programming and manipulation of 
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multidimensional arrays. The current implementation focuses on generating native code 
for performance. 

8. Fortress [1] is a research language developed by Sun Microsystems for the HPCS 
program. The language has many constructs to allow partition global address space 
programming as well as other common programming paradigms such as Object Oriented 
Programming. The current implementation focuses on generating bytecode for the Java 
Virtual Machine. 

9. HPF stands for High Performance Fortran. It is an extension of the Fortran programming 
language that transforms sequential code into Single Instruction Multiple Data (SIMD) 
program by using inline comments. As such, the resulting code can run both sequentially 
with a standard Fortran compiler that ignores the inline comments but it can also run in 
parallel by taking advantage of the user-supplied parallelization hints that come from the 
inline comments. 

10. Fortran 77 is the language chosen for implementation of widely used numerical libraries 
including BLAS, LAPACK, and ScaLAPACK. Even though the Fortran 77 standard has 
been superseded by new versions of the Fortran standard, it is still widely supported and 
most compilers are able to compile code written in Fortran 77 on most of today’s 
computing platforms. 

11. Titanium is a programming language that is a superset of Java. The additional syntax and 
libraries allow partitioned global address space programming on top of the global address 
space networking (GASnet) communication substrate. Titanium programs are compiled 
into native code for maximum performance but still offer many benefits of bytecode and 
execution inside Java Virtual Machine. 

12. C is the implementation language used by the High Performance Linpack code. A 
reference implementation of a scalable version of the Linpack benchmark [20, 22] 
requires an implementation MPI library [19, 21] for communicating between processors 
of a parallel computer. The linker and the runtime of the C programming language is 
usually used by all other languages, and C is often used as the compilation target for 
many of the languages used in this study. 

13. Cilk is an extension of the C programming language that is targeted for symmetric 
multiprocessing (SMP) computers and lets the programmer specify parallelism in the 
code by use of new keywords. The new keywords are meant to give the Cilk runtime 
hints of parallelism inherent in the code. When the new keywords are removed, Cilk code 
reduces to standard C. Cilk runtime implements light-weight threading and is one of the 
first to use the work-stealing technique that has been recently popularized by Intel’s 
Thread Building Blocks. 

14. The Parallel Linear Algebra for Scalable Multi-core Architectures (PLASMA) project 
aims to address the critical and highly disruptive situation that is facing the Linear 
Algebra and High Performance Computing community due to the introduction of multi-
core architectures [4, 5, 6, 18]. 

5. Survey of hardware platforms used in the study 
 

The following hardware platforms were used to obtain performance results for this study: 
1. Cray X1 is a computer that features vector processors connected by a proprietary 

interconnect called NUMAlink. The machine is an example of hardware supported global 
address space. Cray X1 uses the NUMAlink interconnect in a slightly different way than 
SGI machines do; the cache coherency protocol is the main difference. 
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2. SGI Altix is a computer that features Intel Itanium processors connected by a proprietary 
interconnect called NUMAlink. The machine is a ccNUMA (cache coherent Non-
Uniform Memory Access) architecture; the main memory access times vary depending 
on where the memory modules are located and the communication happens via a cache 
coherency protocol. 

3. Itanium cluster with Quadrics interconnect features a high end Intel Itanium processor (a 
very long instruction word (VLIW) architecture) with a proprietary interconnect 
optimized for message passing interface (MPI) applications. 

4. BlueGene/L is a supercomputer architecture that features a low power PowerPC 440 
processor and a proprietary torus interconnect. It is a low power design that can scale to 
hundreds of thousands of processors. 

5. Intel Clovertown is an Intel Core 2 architecture that features 4 cores on a single chip. The 
tested system had two chips totaling 8 cores. It allows multithreaded programming as 
well as explicit message passing paradigm. 

6. Intel Pentium 4 cluster with an Ethernet interconnect combines a commodity processor 
with a commodity interconnect. The primary programming model is message passing. 

 
 

6. Survey of implementations 
 

It is of course arguable how representative such codes are, but the fact that we can easily obtain 
versions of this algorithm for current and future languages are of interest to HPCS. We present 
our findings in Table 1 below (the following is a description of the table column headers).  
 

1. Language: The main language used for the implementation 
2. Author: the person who wrote the code 
3. Method: method used to factorize 

a. Vectorized (calling BLAS-1) 
b. Blocked (calling BLAS-3) 
c. Recursive 
d. Parallel 
e. 1-D, 2-D 
f. Local factorization variants... 
g. Library-based (calling optimized library, perhaps written in a different language) 

4. Pivoting: is partial pivoting done? 
5. Blocking: are blocked calls to BLAS made? 
6. Driver: is driver code included with matrix generation, etc? 
7. SLOC: number of lines in editor (excluding large blocks of comments) 
8. Distribution: parallel distribution type (or 0-D for sequential codes) 
9. Lookahead:  Can the code overlap panel factorizations with trailing matrix updates? 
10. Dist. Mem?:  Can this code run on distributed memory machines? 
11. Reuse L,U: Can L and U be reused for further solves after the factorization is complete? 
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12. Features: Any other important features of the code.  For example, examples suitable for 
teaching purposes are marked as “simple”. 

 
 
 
 
 

Table 1. Findings 
 
 

Language Author Method Pivot-
ing 

Block-
ing 

Driver SLOC Dist Look-
ahead 

Dist. 
Mem? 

Reuse 
L,U 

Features 

MATLAB Cleve Moler Outer 
product, 
row-wise 

Yes No No 37 0-D No No Yes Simple 

Octave Jason Riedy Recursive Yes Yes No 130 0-D No No Yes Algorithm by 
Sivan Toledo 

Python Piotr 
Luszczek 

Outer 
product 

Yes No No 40 0-D No No Yes Simple 

Python Piotr 
Luszczek 

Outer 
product 

Yes Yes No 95 0-D No No Yes Library 

CAF Robert 
Numrich 

Outer 
product 

Yes No Yes 1000 2-D No Yes Yes Simple, long 

CAF John Reid Outer 
product 

Yes Yes Yes 200 1-D No Yes Yes Simple 

CAF Robert 
Numrich 

Outer 
product 

Yes Yes Yes 120 2-D No Yes Yes CafLib, 
SLOC 9222 

UPC Parry 
Husbands 

Outer 
product 

Yes Yes Yes 5100 2-D Yes 
(Dynamic)

Yes U, not 
L 

Fast 

UPC Calin 
Cascaval 

Outer 
product 

Yes Yes Yes 536 2-D No Yes  Simple 

X10 Vivek 
Sarkar 

Outer 
product 

Yes No Yes 167 2-D No (?) Yes* Yes Simple 

Chapel Brad 
Chamberlain 

Outer 
product, 
row-wise 

Yes No No 40 0-D No (?) Yes* Yes Simple 

Fortress Guy Steele, 
Jan Willem-
Massen 

Outer-
product, 
row-wise 

Yes No Yes 100 0-D No (?) Yes* Yes Simple 

HPF M. 
Nakanishi 

Outer 
product 

Yes No No 70 1-D No (?) Yes Yes Simple 

HPF Anotine 
Petitet 

Outer 
product 

Yes Yes Yes 25 2-D No (?) Yes Yes Library 
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LINPACK Cleve Moler Outer 
product, 
vectorized 

Yes No No 60 0-D No No Yes dgefa 

LAPACK LAPACK 
team 

Outer 
product 

Yes Yes No 100+
100 

0-D No No Yes Dgetrf dgetf2 

ScaLAPACK Antoine 
Petitet 

Outer 
product 

Yes Yes No 180+
140 

2-D No Yes Yes PDGETRF 
PDGETF2 

HPL Antoine 
Petitet 

Outer 
product 

Yes Yes Yes 5000+ 2-D Yes  
(Static) 

Yes U, not 
L 

 

Titanium Simon Yau Outer 
product 

No Yes Yes 388  No Yes   

C PLASMA 
team 

Outer 
product 

Yes Yes Yes 400 2-D Yes 
(Dynamic)

No Yes Multithreaded

C Panziera and 
Baron 

Outer 
product 

Yes Yes Yes  2-D Yes 
(Dynamic)

Yes U, not 
L 

Multithreaded 
(up to 512p) 
+ MPI 

Cilk Bradley 
Kuszmaul 

Recursive Yes Yes Yes 266 0-D  No  Multithreaded

* global address space rather than distributed address space 

 

Because the level of abstraction varies widely among the various languages, it is beneficial to 
comment on the services and abstractions that each language provides.   
 

Table 2. Services & Abstractions of languages 
 
Language Services & Abstractions 
Matlab triplet, BLAS as operators, data parallel abstraction 

Python triplet, BLAS as operators, data parallel abstraction 

CAF triplet, first class distributed arrays, global address space 

UPC first class distributed arrays, global address space 

X10 first class distributed arrays, global address space, data parallel + multithreading, “clocks”, 
atomics, “advanced” OO 

Chapel first class distributed arrays, global address space, data parallel + multithreading, atomics, 
“advanced” OO 

Fortress first class distributed arrays, global address space, data parallel + multithreading, atomics, 
“advanced” OO 

HPF triplet, first class distributed arrays, data parallel 

f77/f90 triplet,  PBLAS, BLACS 

Titanium first class distributed arrays, global address space 

Cilk multithreading, 

  

 
Table 1 above and Table 3 below, which relates languages used with performance, are 
discussed in greater detail in section 7. 
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Table 3. Performance of those codes that strive for high performance. 
 

Language Author Best Performance
GFlop/sec 

p Machine % peak Best 1p 
%peak 

CAF Robert Numrich 509 60 Cray X1 71.0 92.1 

UPC Parry Husbands 2249 512 Itanium/Quadrics 78.4 91.8 

UPC Calin Cascaval 118 256 BG/L 16.4 52.5 

HPL Antoine Petitet 280600 131072 BG/L  76.4 80.1 

C PLASMA team 48.5 8 Intel Clovertown 57.0 70.3 

C Panziera and Baron 51870 10160 SGI Altix 
Cluster 

85.1 90.1 

ScaLAPACK Antoine Petitet 44 64 Intel Pentium 4 
cluster 

14.3 47.0 

 
Taking LAPACK's code as an example, Table 4 below provides a breakdown of line counts of 
various sections of the code: 
 

Table 4. Line counts. 
 

 DGETRF DGETF2 Total Percentage 

Leading comments 36 36 72 24.4% 

Blank comments 50 43 93 31.5% 

Other comments 19 13 32 10.8% 

Total comments 105 92 197 67% 

Declarations 11 11 22 7.5% 

Argument checking 14 14 28 9.5% 

Real work 30 18 48 16% 

Total 160 135 295  

 
 
Consequently, the total length can be thought of as anywhere from 48 SLOC (for "real work") up 
to 295 SLOC. And we ignore the code in the library calls to the Basic Linear Algebra 
Subprograms (BLAS): Double-precision General Rank 1 (DGER), Double-precision Scale 
(DSCAL), Double-precision Swap (DSWAP), Double-precision General Matrix-Matrix multiply 
(DGEMM), Double-precision Triangular Matrix Solve Matrix (DTRSM) as well as LAPACK's 
auxiliary routines: Double-precision LAPACK Auxiliary Swap (DLASWP) and Integer 
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LAPACK Auxiliary Environment (ILAENV). Furthermore, this hardly captures the level of effort 
in the PBLAS or BLACS, which were designed with a lot more generality and complexity in 
mind than needed for ScaLAPACK's Parallel Double-precision General Triangular Factorization 
(PDGETRF) subroutine alone. In comparison, the Unified Parallel C (UPC) version [17] 
sacrifices the generality and builds the complexity from scratch, and so comes in last in the SLOC 
metric (if SLOC could be considered as a metric). 
 

  Table 5. SLOC counts for Cilk, UPC, and 
PLASMA. 

 
 

 
 
 
 
 
 

 
7. Relating program development effort to performance 
 
Analysis of tables 1 and 3 gives us insight into the interaction of the development effort and 
resulting execution performance. In addition, combining this with information from table 2 shows 
how the software environment can alleviate the effort and increase the performance. The main 
conclusion is that, on current and future architectures, a high percentage of peak performance can 
only be achieved with a non-trivial amount of coding regardless of the programming language 
involved. This emphasizes the importance of high quality software libraries available across the 
HPCS platforms.  
 
Another important conclusion is that scalable code does not necessarily achieve a high percentage 
of peak performance regardless of the amount of lines of code involved, if either lower-level 
computation and communication primitives are not fully used or the hardware does not expose 
sufficient amount of parallelism and latency hiding. This point will be further stressed by the 
HPCS platforms, which will have a large computational and communication potential available 
through multi-faceted programming languages that promise to offer various concurrency 
primitives. Delivering highly optimized numerical kernels will have to take advantage of both and 
will involve non-trivial amounts of coding.  
 
Finally, reducing coding effort without sacrificing execution performance requires the ability to 
freely compose software modules. By so doing we were able to isolate performance critical 
portions of many of the codes studied. Basic compositing functionality, such as object-oriented 
programming and dynamic library linking, is promised to be included in HPCS languages and 
operating system services. 
 

UPC 

Category SLOC 
Serial Kernels 82 

LU 34 

Backsolve 51 

Trailing Matrix 22 

Cilk 

Category SLOC 
Scheduler 190 

Panel Factorization 10 

Trailing Matrix Updates 70 

Driver 100 

Comments 30 

PLASMA 

Category SLOC 
Threading Package 215 

Panel Factorization 1002 

Update to U 110 

Trailing Matrix Update  454 

Back Substitution 368 
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8. Writing in an HPCS Language 
 

From our survey, we can conclude that while pure data parallel approaches to writing LU 
factorization can produce compact code, they do not perform particularly well.  This leads us to 
consider alternative approaches.  Because all of the HPCS languages include task parallel 
facilities and bearing in mind that the simple alternative of simulating a single program multiple 
data (SPMD) code such as High Performance Linpack (HPL) is always available, we consider the 
issues involved in writing task parallel LU factorization codes. 
 
We restrict our attention here to multithreaded implementations which have enjoyed a resurgence 
in recent years.  Because our results indicate that blocking and look-ahead are required for 
performance, we also focus on these two aspects.  Blocking is primarily provided by the matrix 
abstraction while support for look-ahead is dependent on the parallel control flow and 
synchronization primitives in the language. 
 
Multithreaded approaches have some potential advantages on distributed memory machines: 

• Better communication latency tolerance 
• Look-ahead (algorithmic latency tolerance) is dynamic leading to improved machine 

utilization 
There are, however, some costs: 

• User control over the schedule is needed in order to minimize parallel execution time. 
• User (or system) control over the amount of buffering required in distributed memory 

machines. 
 

The scheduling issue is paramount for performance.  It essentially comes down to scheduling a 
directed acyclic graph (DAG) of tasks on each of the processors.  These tasks correspond to the 
major operations of the algorithm, and edges between them represent dependencies that must be 
satisfied before the task can run.  In the dense linear algebra case, the tasks and dependencies are 
statically determined by the matrix size and block size.  In more complex algorithms, the tasks 
and edges may be dynamically determined by the data.  
 
Ultimately the scheduler (either a global or many local ones) must decide, for each 
processor/core, the “best” task to run at any given time, knowing which dependencies have 
already been met and some information (flops, running time) about the task pool.   The difficulty 
lies in the definition of “best”.  There are many, possibly competing requirements: 
 

• The task must advance the parallel execution of the algorithm.  The scheduler’s decision 
should delay other tasks as little as possible.  This is also known as the “critical path” 
issue. 

• The sequence of tasks run on any given processor/core should incur as few cache misses 
as possible (this may compete with the previous requirement).  Because of the dominance 
of BLAS-3 operations in LU factorization, this is less of an issue here. 

• The tasks must be chosen so that buffer memory is not exceeded. 
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The definition and implementation of protocols for interacting with schedulers is, however, still a 
research topic (and so have been excluded from the HPCS languages).  As such, schedulers have 
traditionally been built in an application specific manner using parallel control flow features 
(spawns and waits) combined with various data structures, such as scoreboards for keeping track 
of dependencies.  Thread priorities are also another way of influencing the scheduler, but to our 
knowledge this hasn’t been widely used in scientific computing codes.  We anticipate the use of 
similar techniques in X10, Fortress, and Chapel.  Features in these languages for task control 
include single and sync variables (for producer consumer relationships), spawns with locality 
directives, guarded statements (that fire when a condition is satisfied), and atomic regions.  These 
are the basic tools that will be used for constructing schedulers [3]. 
 
9. Portability issues 
 
Achieving portability could be a daunting task on the HPCS platforms even though there are only 
a projected few of them. At the most fundamental level there exist serious nomenclature 
disparities between the participating hardware vendors, even though the subject matter remaining 
seems to be quite unified. This issue was brought to the vendors’ attention at the language 
workshop (see Section 14). 
 
A related issue is the programming languages being developed by the HPCS vendors. It would be 
very hard to deliver a high quality numerical kernel library in more than one programming 
language. And the difficulty becomes yet greater when considering any non-trivial scientific 
code. This issue, again, was raised during the language workshop and with vendors’ 
understanding. 
 
A likely portability layer could emerge at the library level; each of the HPCS platforms should 
offer compatible software interfaces to high quality numerical kernels such as LU factorization. 
Multi-language banding can already be done in portable fashion and has ongoing support of 
various DOE sites. 
 
Finally, we also envision some level of portability at the basic runtime level. This will unify 
operating system and messaging primitives to successfully build the aforementioned libraries in a 
portable manner. A cross-platform messaging runtime on HPCS platforms is an on-going effort 
within HPCS as discussed during the language workshop (see Section 14). 
 
10. Automatic performance tuning of numerical kernels 
 
Automatic performance tuning is a viable approach for achieving high performance when dealing 
with complex computer architectures, which is especially important for HPCS hardware. The 
optimal performance search space will certainly grow in size as we move the tuning process to 
future hardware. The code that we have chosen as the primary case study, LU factorization with 
pivoting, exposes multiple aspects of automation. At the most basic level, automatic tuning 
addresses the basic computer architecture artifacts such as register file, cache structure, and 
memory hierarchy. On even more complex processors, the tuning process will inadvertently need 
search space pruning techniques with a cautious choice of eliminated parameter subspaces. We 
envision here a hierarchical approach to tuning whereby at different levels of the hierarchy the 
tuning space is pruned differently, yielding varying amounts of tuning time and possibly different 
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results in performance achieved by the resulting code. We also recognize higher level parameters 
that will be amenable to automatic performance tuning especially on a brand new computer 
architecture.  
 
In the case of LU factorization, there can be many algorithmic choices with respect to 
computational and communication aspects of the kernel. The computational aspect of LU 
factorization includes the algorithm formulation (inner versus outer product, left- versus right-
looking etc.), blocking strategy (1D or 2D, uniform or adaptive, etc.), the dependency graph 
traversal, and threading and multiprocessing strategies. The communication aspect of LU 
factorization mostly involves messaging patterns at various stages of the algorithm together with 
size-tuning and asynchronicity of these patterns [9]. 
 
Finally, we recognize the contextual aspect of auto-tuning. Context here means both the 
dependence of data being operated on as well as interaction with other components of the 
software and hardware ecosystem. We believe that these issues will have to be addressed at some 
point as the HPCS hardware and software ecosystem matures. The detailed analysis of this aspect 
exceeds the scope of this study. 
 
 
11. Program analysis and semi-automatic program tuning 
 
In addition to fully automated performance tuning, we found during the study that an 
optimization technique known as guided tuning will be equally important on HPCS systems, as it 
is already on current high end supercomputer architectures. A part of this process is 
decomposition of functionality and unrelated performance portions of the code. As mentioned 
earlier, we find it important to efficiently (in terms of programming effort and the runtime 
overhead) compose these portions of the code into a final working executable. In addition, 
computational and communication primitives should also allow this mix and match approach as 
the developer finds the bottlenecks in the code and attempts to remove them by not only 
algorithmic changes but also by mixing-in additional software and hardware capabilities of the 
underlying computing platform. We found it indispensable to be able to gather performance data 
of a running program and go back to address the performance issues in the appropriate portions of 
the code. This was both true for our own codes as well as for other developers that lent us their 
codes for study. And we envision this guided tuning to be important at the initial stages of HPCS 
platform development when the process of guided tuning will be mostly manual. And later on it 
will be important for development of semi-automatic software tools such as compilers and 
program analyses tools. 
 
12. Software environment for future DARPA computing platforms 
 
As should be evident from the analysis above, a working compiler is hardly a sufficient 
requirement for anything but the most trivial programming task. As the HPCS systems aspire to 
address the issues of programmability and scale, we have identified three aspects of code 
development that will need the attention of a productive ecosystem: 
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1. Code reuse, 
2. Executable generation, and 
3. Performance analysis. 
 

The first aspect, code reuse, stresses existence and availability of high performance and high 
numerical quality computational kernels. Even though we have chosen a numerical linear algebra 
kernel as the main example of this study, we do not envision the users of the future HPCS 
systems writing this kind of functionality code themselves. Instead, we see the need for such code 
to be developed for the users so they can focus on software that will more directly address the 
goals of the HPCS program in terms of scientific progress and national security. Numerical linear 
algebra kernels for both dense and sparse problems should be developed as soon as prototype 
hardware becomes available and evolve to successfully reach acceptable performance as the 
HPCS hardware attains production level status. We believe in open source dissemination of such 
software, as it will serve three important purposes: as a warrant of portability (if not across few 
HPCS architectures then at the very least across upgrades of a single architecture), as a teaching 
tool for the users at high-end performance regimes, and as a starting point for the vendors in 
developing highly-tuned versions of binaries for one particular generation of hardware 
architecture. 
 
The second aspect, executable generation, stresses the transparency of code generation as well as 
both static and dynamic linking. It is important for both low-level kernel and application code 
developers to understand and influence the compilation process, especially on the HPCS 
platforms, which will feature unprecedented levels of hardware complexity not excluding multi-
tier parallelism and heterogeneous hardware components. 
 
Finally, the third aspect, performance analysis, draws attention to the ability of examining the 
execution of code both at runtime and post-mortem. We envision here access to hardware 
performance counters and a software profiling interface at various levels of granularity. As was 
already stressed before, the current high-end architectures and their interfaces for code execution 
introspection are only the starting point for the development of performance analysis tools as the 
HPCS hardware is expected to exceed scale and complexity of currently available solutions. 
 
13. Collaboration with the HPCS hardware and language developers 
 
This study increased our collaboration with the HPCS hardware and language developers. Our 
primary case study, LU factorization, is part of an important benchmarking effort within HPCS 
called the High Performance Computing Challenge (HPC Challenge or HPCC). HPCS hardware 
and software developers participated in this effort, which resulted in exchange of information 
with respect to hardware potential and software requirements for efficient implementation of the 
LU kernel. 
 
Despite its superficial simplicity, the LU kernel presents a few numerical challenges that stress 
compliance with the IEEE 754 floating-point standard. A case in point is the treatment of 
denormal pivots that, if treated properly, might avoid generation of special floating-point values 
such as infinities or not-a-number (NaNs - which are undefined results of a floating-point 
operation). 
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Finally, our study reiterated with the vendors the need for unifying the nomenclature so that 
various HPCS systems can be compared with respect to raw performance specifications as well as 
the achieved performance levels. 
 
14. High performance languages workshop 
 
In January 2007 we participated in a 3-day programming workshop at Rice University. Present at 
the meeting were representatives from the HPCS vendors, mostly programming language 
developers. HPCS representatives from academia and government labs were also present. 
 
One of the important topics discussed at the workshop was the common messaging runtime. Such 
runtimes expose the high-bandwidth and the low-latency of the HPCS platforms to both MPI 
library implementations as well as the HPCS languages. The effort regarding the runtime is still 
ongoing. 
 
Another broad topic of the meeting was the language features found in different HPCS languages. 
The features discussed were: 

• multidimensional array syntax and semantics and their relation to other language 
features 

• object orientation including templating, inheritance, and their relation to the built-in type 
system 

• support for IEEE 754 floating-point standard: conformance, implementation and 
performance. 

 
The organizational items included the discussion about unification of hardware and 
programming language nomenclatures as well as the time frame for deliverables and the 
milestone schedule. To summarize the findings, it was recognized that, despite the different 
wording, all HPCS vendors recognize conceptually similar components in their hardware. The 
programming languages relate to these components, again using different nomenclature but at  
the same time very similar at the conceptual level. The development of the HPCS languages was 
on track with prototype systems already available for the existing hardware platforms. 

 
15. Conclusions 
 

Even with its perceived simplicity, parallel LU factorization presents unique challenges to 
language designers and library writers. We have shown that scaling up the available hardware 
resources has to be accompanied by programming language tools. If the tools are not provided, 
then first, the scaling of the code quickly deteriorates and second, the fraction of the peak 
performance observed in a sequential environment can never be achieved in a parallel setup. But 
performance is only one part of HPCS’ productivity goal. The other important part is programmer 
effort in delivering a well performing code. Both the programming language features and a rich 
set of third party libraries are required to achieve this goal. 
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Acronyms 
 
Explanation of acronyms used in this report: 
 
• BLAS – Basic Linear Algebra Subprograms 
• BLAS-1 – Level 1 BLAS: operations on vectors 
• BLAS-3 – Level 3 BLAS: matrix-matrix operations 
• BLACS - Basic Linear Algebra Communication Subprograms  
• CAF – Co-array Fortran 
• DAG - Directed Acyclic Graph 
• DARPA – The Defense Advanced Research Projects Agency 
• DGEMM – Double-precision General Matrix-Matrix multiply 
• DGER – Double-precision General Rank 1 Update (BLAS) 
• DLASWP – Double-precision LAPACK Auxiliary Swap 
• DSCAL – Double-precision Scale (BLAS) 
• DSWAP - Double-precision Swap (BLAS) 
• DTRSM – Double-precision Triangular Matrix Solve Matrix (BLAS) 
• GASnet – Global Address Space Networking 
• HPCC – High Performance Computing Challenge 
• HPCS – High Productivity Computing Systems 
• HPF – High Performance Fortran 
• HPL – High Performance Linpack benchmark 
• ILAENV – Integer LAPACK Auxiliary Environment 
• LAPACK – Linear Algebra PACKage 
• Linpack – LINear PACKage: a set of Fortran subroutines for numerical linear algebra; 
also a benchmark based on one of the Linpack subroutines 
• LU – Lower Upper 
• MPI – Message Passing Interface 
• PBLAS – Parallel BLAS 
• PDGETRF – Parallel Double-precision General Triangular Factorization (ScaLAPACK) 
• PLASMA – Parallel Linear Algebra for Scalable Multi-core Architectures 
• RISC – Reduced Instruction Set Computer 
• ScaLAPACK – Scalable LAPACK 
• SIMD - Single Instruction Multiple Data 
• SLOC – Source Line of Code 
• SMP – Symmetric Multiprocessing 
• SPMD – Single Program Multiple Data 
• UPC – Unified Parallel C 
• VLIW – Very Long Instruction Word 
 
 




